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What actually is OO?

The following have historically been defined as being central to
Object-orientation [1]:

Encapsulation.
Inheritance.
Abstraction via Subtype Polymorphism.

Of these, the latter is then most important distinguishing
feature: it is what allows the construction of large and
re-useable frameworks via Meyer’s open-closed principle [6].
This is only really possible if the Liskov Substitution Principle is
followed [4].
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The Liskov Substitution Principle

The LSP is a form of design by contract, constraining derived
classes as follows [6]:

. . . when redefining a routine [in a derivative], you may
only replace its precondition by a weaker one, and its
postcondition by a stronger one.
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Exploiting the LSP for GI

The LSP allows us to safely substitute subclasses for
superclasses. The original intent was that this substitution be
performed by human software engineers, but it is obviously
very useful for larger-scale transformations than have
traditionally been used in GI.

Pitfall: Java collections aren’t always strictly LSP-conformant
(e.g. throwing ‘UnsupportedOperationException’). Hence, in
practice, testing is required.
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Implementation Outline

In outline, the process is as follows:
Parse the source file, obtaining an abstract syntax
tree—identify variation points within this AST.
Find the subset of possible target substitutions (from all
container classes within Guava, Apache Collections, and
Java 8’s util package) which are valid for each variation
point.
The search space is then all combinations of valid
substitutions over the identified variation points.
Select an assignment, replace the variation point with its
target substitution, and write the mutated source to disk.
Compile, and evaluate this source in terms of its energy
consumption.
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Variation Points

Google Guava implements a variety of concrete subclasses of
java.util.Collection.

Well-known tradeoffs in performance between different
subclasses: e.g. finding an element in a linked list is O(n), in a
hash-set O(1).

We selected ImmutableMultimap as a test-case, as it
contains a number of instantiations of Collections subclasses.
Three types of instantiations were identified as variation points:

Calls to constructors (e.g. new LinkedHashMap<>()).
Calls to factory classes (e.g. Maps.newHashMap()).
Calls to static creator methods (e.g.
ImmutableList.of()).
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Mutating the Source Code

At each variation point, the interface of the created object was
determined by one of three methods:

Return statements: the method’s return type.
Variable declarations: the declared type.
Other expressions: the least-general interface
implemented by the class, one of Map, Set, List,
Multimap, Multiset, or Collection.

Note: Careless programmers may e.g. rely on a collection
being sorted, despite this not being part of the interface. This is
an error, and should be fixed—the best that can be done is to
use existing unit tests during the search.
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Measuring Energy Consumption: Existing methods

Hardware tools exist, such as the data provided by an
Uninterruptible Power Supply or electronic watt-meter. These
are useful for a coarse-grained overview. . . their precision and
accuracy is too low for comparing very similar algorithms.
Software alternatives such as:

JALEN [7]—targets Java; estimates power consumption as
a function of execution time, CPU utilisation, and clock
frequency (low precision as reliant on timing: experiments
must be repeated multiple times within a measurement).
Wattch [2]—cycle-level simulator, provides ability to
distinguish between very similar programs. . . requires a
parameterised model of CPU, and doesn’t support Java
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OPACITOR (1)

OPACITOR traces the execution of Java code, using a modified
version of OpenJDK. This JVM generates a histogram counting
the number of times each Java opcode was executed.

Uses a model of energy costs of each Java opcode created by
Hao et al. [3] in their eLens work to calculate the energy
consumption.

It provides ability to distinguish programs down to single
instruction. . . but accuracy depends on the model used!
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OPACITOR (2)

Most important in this work is comparative accuracy, e.g. a < b
is correct, rather than a = 3.78543J. . . this depends on the
variability of energy consumption by opcodes, particularly those
dependent on operands.

A further complication is the significant variability between
different runs of the exact same Java program: both Garbage
Collection and Just-in-Time compilation are non-deterministic,
which greatly affects execution time and power consumption.
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OPACITOR (3)

In OPACITOR, therefore, during evolution GC and JIT are both
disabled. This allows runs to be repeatable.

In final testing, all features are enabled to ensure final results
are valid on a standard JVM.

This leads to an important benefit of OPACITOR, compared to
timing or wall-power measurements—its determinism means
that it can be executed in parallel or concurrently with other
software.
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Experiments

1 Using a GA to search the space of solutions (674,325),
repeated 5 times with different seeds.

2 Exhaustive search on the entire space (parallelised to
allow completion in reasonable time—approximately 10
seconds per evaluation).

3 Exhaustive search independently on each variation point,
following the example of Manotas et al. [5] (on source
rather than bytecode).
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Results (1)

Measurement
technique

GA Original

J J p e

OPACITOR 216.49 298.58 – –
OPACITOR with

JIT and GC
11.15 14.75

<.001 0.93
σ2.06 σ1.13

JALEN
11.81 15.25

<.001 0.94
σ2.18 σ1.00

Table: Energy used by test program as measured by OPACITOR,
OPACITOR with JIT and GC enabled, and JALEN. Each measurement
shows the mean and standard deviation over 100 runs of two
versions of ImmutableMultimap—the GA result vs. original.
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Results (2)

Measurement
technique

GA Independent Exhaustive

J J p e

OPACITOR 216.49 266.43 – –
OPACITOR with

JIT and GC
11.15 13.45

<.001 0.85
σ2.06 σ1.15

JALEN
11.81 13.46

<.001 0.82
σ2.18 σ0.66

Table: Energy used by test program as measured by OPACITOR,
OPACITOR with JIT and GC enabled, and JALEN. Each measurement
shows the mean and standard deviation over 100 runs of two
versions of ImmutableMultimap—the GA result vs. the
“Independent Exhaustive Search” result.
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Conclusions (1)

We have introduced ‘Object-Oriented Genetic Improvement’, a
technique to optimise non-functional properties, e.g. time or
energy, by subclass substitution and applied this technique to
Google Guava’s ImmutableMultimap class, using OPACITOR

to evaluate energy consumption.

The results showed that energy savings of approximately 24%
could be made optimising this class alone.

These results were corroborated by JALEN, using time and
CPU utilisation as a proxy to estimate energy consumption.



Introduction Implementation Measuring Energy Consumption Experiments and Results Conclusions References

16/19

Conclusions (2)

The exhaustive search showed that our GA found the best
possible solution, using 3,500 fitness evaluations (vs. space of
674,325 candidates—almost 200 times faster than exhaustive).

The results of the approach used in [5] shows that variation
points within code are not always independent (although it
only required 105 fitness evaluations). In this case, two of the
variation points instantiate the private BuilderMultimap
class, where other variation points exist within that
class. . . substituting BuilderMultimap for an alternative may
miss a better substitution inside the private class.
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